

FIBER OPTICAL CABLE CATALOG

High Quality is Our Obligation

CATALOGUE

GIMM(50 ; 62.5μm) Fiber	1
G655 Fiber	2
G652D Fiber	3
G657A2 Fiber	4
G657A1 Fiber	5
Tight Buffer Fiber Colour	6
Simplex Cable GJFJV-1F	7
Duplex Cable GJFJV-2F	8
Distribution Cable GJFJV≤24F	9
Mulit Purpose Description Cable MPC≥24F	10
Break-out Cable GJBFJV	11
Waterproof Cable GJA	12
Bow-type Drop Cable GJXH	13
Bow-type Drop Cable GJXFH	14
Self-Supporting Bow-type Drop Cable GJYXFCH	15
Self-Supporting Bow-type Steel Wire Drop Cable GJYXCH	16
Bow-type Drop Cable for Duct GJXFHA	17
Unitube Light-armored Cable GYXTW	18
Stranded Loose Tube Cable GYTS	20
Double Sheathed Cable GYTA53	22
Figure 8 Cable GYTC8S	24
All Dielectric self-supporting Aerial Cable ADSS	26
8 Core Mini Cable	28

GIMM(50 ; 62.5µm) Fiber

Optical Characteristics		50	μm	62.	5µm		
			Class A	Class B	Class A	Class B	
	@850 n	m	≤2.3	≤2.5	≤2.7	≤3.0	dB/km
Attenuation	@1300	nm	≤0.6	≤0.7	≤0.6	≤0.8	dB/km
Deschwidth	@850 n	m	≥500	≥500	≥200	≥160	MHz.km
Bandwidth	@1300	nm	≥1000	≥500	≥600	≥500	MHz.km
Zero dispersion wavelength			1295~	-1320	1320	~1365	nm
7 models and a start of the start	1295~1	300nm		≤0.001	(λο-119))	ps/(nm²·km)
Zero dispersion slope	1300~1	320nm	≤0	.11	≤0.	097	ps/(nm²·km)
Numerical Aperture			0.2±0	0.015	0.275	±0.015	NA
	@850 n	m	1.4	82	1.4	196	
Numerical Aperture	@1300	nm	1.4	77	1.4	491	
Backscatter Characterisrics							
Step(Mean of bidirectional measurement)				≤(0.1		dB
Irregularities over fiber length and point disconting	uity			≤(0.1		dB
Diffrence backscatter coefficient (Bidirectional me	easurement	t)	≤0	0.08	≤0	.1	dB
Geometrical Characteristics							
Core diameter			50	±2.5	62.5	5±2.5	μm
Cladding diameter			124.8±1.0		μm		
Cladding non-circularity			≤1	.0		%	
Coating diameter			245	5±7		μm	
Coating-cladding concentricity error			≤1	2.0		μm	
Coating non-circularity			≤6	5.0		%	
Core-cladding concentricity error			≤1	.5		μm	
Environmental Characteristics		@1	L310 nm	0 @155	50 nm	@1625	nm
Temperature dependence Induced attenuation at		-60°C to +85°	°C		≤0	.1	dB/km
Temperature-humidity cycling Induced attenuation	n at	-10°C to +85°	°C , 98% R	Н	≤0	.1	dB/km
Watersoak dependence Induced attenuation at		23°C, 30 days	3°C, 30 days		≤0	.1	dB/km
Damp heat dependence Induced attenuation at		85℃ & 85% F	RH ,30days	;	≤0	.1	dB/km
Mechanical Specification							
					2	29.0N	
Proof test		off line		≥1.0%			
		≥100kpsi					
Macro-bend induced attenuation							
100 turns around a mandral of 60mm diameter		@850 nr	n		4	≤0.05dB	
i oo turns around a mandrei of bomm diameter		@1300n	m		4	≤0.05dB	
Coating strip force		typical av	verage for	се		1.5N	
Dynamic stress corrosion susceptibility paramete	r		Ŭ	≥2	20		

1.469

≤0.05dB

@1310 nm @1550 nm @1625 nm

G655 Fiber

Optical Characteristics

Attenuation	@1550 nm	≤0.22dB/km
Allendation	@1625 nm	≤0.24dB/km
Attenuation vs. Wavelength Max. α difference	@1525~1575 nm	≤0.02dB/km
Dispersion coefficient	@1530~1565 nm	2.0~6.0ps/(nm ² ·km)
Dispersion coefficient	@1565~1625 nm	4.5~11.2ps/(nm²·km)
Zero dispersion wavelength	≤	1520nm
Zero dispersion slope		0.084ps/(nm²·km)
Zero dispersion slope (Typical)	<	0.086ps/(nm²·km)
PMD (Polarization Mode Disperson)		
Maximum Individual Fibre		≤0.2ps/√km
Link Design Value (M=20,Q=0.01%)		≤0.08ps √ km
Typical value		0.04ps/√km
Cable cutoff wavelengthλcc		≤1450nm
Mode field diameter (MFD)	@1550 nm	9.6±0.5µm

Geometrical Characteristics

Point discontinuities

Group index of refraction (Typical)

Cladding diameter	124.8±0.7µm	
Cladding non-circularity	≤1.0%	
Coating diameter	245±7µm	
Coating-cladding concentricity error	≤12.0µm	
Coating non-circularity	≤6.0%	
Core-cladding concentricity error	≤0.6µm	
Curl (radius)	≥4m	

@1550 nm

@1550 nm

Environmental Characteristics

Temperature dependence Induced attenuation at
Temperature-humidity cycling Induced attenuation at-60°C to +85°C≤0.05dBdB/kmTemperature-humidity cycling Induced attenuation at
Watersoak dependence Induced attenuation at
Damp heat dependence Induced attenuation at
Dry heat aging at-60°C to +85°C98% RH
20°C to +85°C , 98% RH
23°C, 30 days≤0.05dBdB/kmS5°C & 85% RH ,30days≤0.05dBdB/kmS5°C85°C≤0.05dBdB/km

Mechanical Specification

Proof test	off line	≥9.0N
		≥1.0%
		≥100kpsi

Macro-bend induced attenuation

	≥2	27	
Dynamic stress corrosion susceptibility parameter		07	
Coating strip force	typical average force	1.5N	
100 turn around a mandrel of 50 mm diameter	@1550nm	≤0.05dB	
1 turn around a mandrel of 32mm diameter	@1550.57	≤0.05dB	

G652D Fiber

Optical Characteristics

	@1310 nm	≤0.35dB/km	
	@1383 nm (after H2-aging)	≤0.35dB/km	
	Attenuation	@1550 nm	≤0.22dB/km
		@1625 nm	≤0.24dB/km
	Attenuation vo. Wavalangth Max. g difference	@1285~1330 nm	≤0.03dB/km
	Attenuation vs. wavelength Max. d difference	@1525~1575 nm	≤0.02dB/km
		@1285~1340 nm	-3.0~3.0ps/(nm²·km)
	Dispersion coefficient	@1550 nm	≤18ps/(nm²·km)
		@1625 nm	≤22ps/(nm²·km)
	Zero dispersion wavelength		1302~1322 nm
	Zero dispersion slope		≤0.090ps/(nm²·km)
	Zero dispersion slope (Typical)		≤0.086ps/(nm²·km)

PMD (Polarization Mode Disperson)

Maximum Individual Fibre	Maximum Individual Fibre	
Link Design Value (M=20,Q=0.01%)		≤0.1ps/ _{√km}
Typical value		0.01ps/ _{\sqrt{km}}
Cable cutoff wavelength Acc		≤1260nm
Mode field diameter (MED)	@1310 nm	9.2±0.4µm
	@1310 nm @1550 nm	10.4±0.5µm
Crown index of refraction (Typical)	@1310 nm	1.466
Group index of refraction (Typical)	@1550 nm	1.467
Deint discentinuities	@1310 nm	≤0.05dB
Formulacontinuities	@1550 nm	≤0.05dB

Geometrical Characteristics

Cladding diameter		125.0±1.0µm
Cladding non-circularity		≤0.7%
Coating diameter		245±5µm
Coating-cladding concentricity error	n	≤12.0μm
Coating non-circularity		≤6.0%
Core-cladding concentricity error		≤0.5µm
Curl (radius)		≥4m
Delivery length		2.1 to50.4km/reel

Environmental Characteristics

@1310 nm @1550 nm @1625 nm

Temperature dependence Induced attenuation at	-60°C to +85°C	≤0.05dBdB/km
Temperature-humidity cycling Induced attenuation at	-10℃ to +85℃ , 98% RH	≤0.05dBdB/km
Watersoak dependence Induced attenuation at	23℃, 30 days	≤0.05dBdB/km
Damp heat dependence Induced attenuation at	85℃ & 85% RH ,30days	≤0.05dBdB/km
Dry heat aging at	85℃	≤0.05dBdB/km

Mechanical Specification

		≥9.0N
Proof test	off line	≥1.0%
		≥100kpsi

Mechanical Specification

1 turn around a mandrel of 32mm diameter		≤0.05dB
100 turns around a mandrel of 50 mm diameter	@1310 nm @1550 nm	≤0.05dB
100 turn around a mandrel of 60 mm diameter		≤0.05dB
Constinue stain former	typical average force	1.7N
Coating strip force	peak force	≥1.3 ≤8.9N
Dynamic stress corrosion susceptibility parameter		≥20

G657A2 Fiber

Optical Characteristics

	@1310 nm	≤0.35dB/km		
Allerenetter	@1383 nm (after H2-aging)	≤0.35dB/km		
Attenuation	@1460 nm	≤0.25dB/km		
	@1550 nm	≤0.21dB/km		
	@1625 nm	≤0.23dB/km		
Attenuation vs. Wavelength	@1285~1330 nm	≤0.03dB/km		
Max.αdifference	@1525~1575 nm	≤0.02dB/km		
Zero dispersion wavelength		1300~1324 nm		
Zero dispersion slope		≤0.092ps/(nm²·km)		
PMD (Polarization Mode Disperson)				
Maximum Individual Fibre		≤0.2ps/ _{√km}		
Link Design Value (M=20,Q=0.01%)		≤0.1ps/ _{√km}		
Typical value		0.04ps/ _{\km}		
Cable cutoff wavelength Acc		≤1260nm		
Mode field diameter (MED)	@1310 nm	8.4~9.2µm		
	@1550 nm	9.3 ~ 10.3µm		
Crown index of refrection (Typical)	@1310 nm	1.466		
Group index of refraction (Typical)	@1550 nm	1.467		
Point discontinuities	@1310 nm	≤0.05dB		
	@1550 nm	≤0.05dB		
Geometrical Characteristics				
Cladding diameter		125.0±1.0μm		
Cladding non-circularity		≤0.7%		
Coating diameter		245±5µm		
Coating-cladding concentricity error		≤12.0µm		
Coating non-circularity		≤6.0%		
Core-cladding concentricity error		≤0.5µm		
Curl (radius)		≥4m		
Delivery length		2.1 to50.4km/reel		
Environmental Characteristics	@1310nm @155	50 nm @1625 nm		
Temperature dependence Induced attenuation at	-60℃ to +85℃	≤0.05dBdB/km		
Temperature-humidity cycling Induced attenuation at	-10℃ to +85℃ , 98% RH	≤0.05dBdB/km		
Watersoak dependence Induced attenuation at	23°C, 30 days	≤0.05dBdB/km		
Damp heat dependence Induced attenuation at	85℃ & 85% RH ,30days	≤0.05dBdB/km		
Dry heat aging at	85℃	≤0.05dBdB/km		

Mechanical Specification

		≥9.0N
Proof test	off line	≥1.0%
		≥9.0N ≥1.0% ≥100kpsi

Mechanical Specification

10 turns around a mandrel of 15mm diameter	@1550 nm	≤0.03dB
10 turns around a mandrel of 15 mm diameter	@1625 nm	≤0.1dB
1 turn around a mandrel of 10 mm diameter	@1550 nm	≤0.1dB
1 turn around a mandrel of 10 mm diameter	@1625 nm	≤0.2dB
1 turn around a mandrel of 7.5 mm diameter	@1550 nm	≤0.2dB
1 turn around a mandrel of 7.5 mm diameter	@1625 nm	≤0.5dB
Coating strip force	typical average force	1.7N
	peak force	≥1.3 ≤8.9N
Dynamic stress corrosion susceptibility parameter		>27

G657A1 Fiber

Optical Characteristics

			≤0.35dB/km	
		@1383 nm (after H2-aging)	≤0.35dB/km	
Attenuation		@1460 nm	≤0.25dB/km	
		@1550 nm	≤0.21dB/km	
			≤0.23dB/km	
Attenuation vs. Wavelength	Attenuation vs. Wavelength Max.α difference		≤0.03dB/km	
Max. α difference			≤0.02dB/km	
			-3.4~3.4ps/(nm²·km)	
Dispersion coefficient		@1550 nm	≤18ps/(nm²·km)	
		@1625 nm	≤22ps/(nm²·km)	
Zero dispersion wavelength		·	1300~1324 nm	
Zero dispersion slope	Zero dispersion slope			
Typical value			0.086ps/(nm²·km)	

PMD (Polarization Mode Disperson)

Maximum Individual Fibre		≤0.21ps√ _{km}
Link Design Value (M=20,Q=0.01%)	≤0.1ps/ _{√km}	
Typical value		0.04ps/√km
Cable cutoff wavelength Acc		≤1260nm
Made field diameter (MED)	@1310 nm	8.4~9.2µm
	@1550 nm	9.3 ~ 10.3µm
	@1310 nm	1.466
Group index of refraction (Typical)	@1550 nm	1.467
Doint diagontinuition	@1310 nm	≤0.05dB
r onit discontinuities	@1550 nm	≤0.05dB

Geometrical Characteristics

Cladding diameter	125.0±1.0µm
Cladding non-circularity	≤0.7%
Coating diameter	245±5µm
Coating-cladding concentricity error	≤12.0μm
Coating non-circularity	≤6.0%
Core-cladding concentricity error	≤0.5µm
Curl (radius)	≥4m
Delivery length	2.1 to50.4km/reel

Environmental Characteristics

@1310 nm @1550 nm @1625 nm

Temperature dependence Induced attenuation at Temperature-humidity cycling Induced attenuation at -60° C to $+85^{\circ}$ C $\leq 0.05dBdB/km$ Watersoak dependence Induced attenuation at Damp heat dependence Induced attenuation at Damp heat dependence Induced attenuation at 23° C, 30 days $\leq 0.05dBdB/km$
Temperature-humidity cycling Induced attenuation at -10°C to +85°C , 98% RH ≤0.05dBdB/km Watersoak dependence Induced attenuation at 23°C, 30 days ≤0.05dBdB/km Damp beat dependence Induced attenuation at 25°C № 55°C № 55°C PL 20 days <0.05dBdB/km
Watersoak dependence Induced attenuation at 23°C, 30 days ≤0.05dBdB/km Damp beat dependence Induced attenuation at 25°C, 85% PH, 20days <0.05dBdB/km
Damp heat dependence induced attenuation at SEC 9 SEC PL 20 days
bailpheat dependence induced attendation at a sol & 65 C & 65 % KH , 500 ays \$20.05 dbdb/km
Dry heat aging at 85℃ ≤0.05dBdB/km

Mechanical Specification

		≥9.0N
Proof test	off line	≥1.0%
		≥100kpsi

Mechanical Specification

10 turns around a mandrel of 30 mm diameter	@1550 nm	≤0.25dB	
10 turns around a mandrel of 30 mm diameter	@1625 nm	≤1.0dB	
1 turn around a mandrel of 20 mm diameter	@1550 nm	≤0.75dB	
1 turn around a mandrel of 20 mm diameter	@1625 nm	≤1.5dB	
Coating strip force	typical average force	1.7N	
Coating stilp lorce	peak force	≥1.3 ≤8.9N	
Dynamic stress corrosion susceptibility parameter		≥20	

Tight Buffer Fiber Colour

Description

Tight buffer fiber is produced as that fiber is sheathed by buffer material. The selection of top-quality fiber, the specific production equipment and the accurately designed die make the performance of product.

Characteristics

- ► Good uniformity of the outer diameter of
- tight buffer fiber and excellent strippability.Good performance of flame-retardant.
- Low induced attenuation within the operating temperature range.
- Excellent geometrical dimension of the fiber.

Applications

- Indoor cable
- Making jumper, pigtail.
- ► Data communication

Fiber Nuber	1	2	3	4	5	6	7	8	9	10	11	12
Colour	Blue	Orange	Green	Brown	Gray	Withe	Red	Black	Yellow	Violet	Pink	Aqua
Colour Code	BU	OG	GN	BN	GY	WH	RD	BK	YW	VT	PK	AA

Technical Parameters

Fiber Coating	TBF Diameter	TBF Weight	Tensile Strength	Crush Resistance	Bending Radius	Bcoating Strip
Diameter(µm)	(µm)	(kg/km)	Long/Short term(N)	Long/Short term(N/100mm)	Dynamic/Static(mm)	(N)
254±7	900±50	0.90	3/6	100/500	20D/10D	≤13.3

TGF Colour

Simplex Cable GJFJV-1F

Description

GJFJV simplex cable use single Φ900µm or Φ600µm flame-retardant tight buffer fiber as optical communication medium, the tight buffer fiber wrapped with a layer of aramid yarn as strength member units, and the cable is completed with a PVC or LSZH(Low smoke, Zero halogen, Flame-retardant)jacket.

Characteristics

- ▶ Tight buffer fiber ease of stripping .
- ► Tight buffer fiber have excellent flame-retardant performance.
- Aramid yarn as strength member make cable have excellent tensile strength.
- ► The jacket anti-corrosion, anti-water, anti-ultraviolet radiation, flame-retardant and harmless to environment etc.

Standards

Comply with standard YD/T 1258.2-2003、ICEA-596、GR-409、IEC 60794-2-10/11、etc; and meet the requirements of UL approval for OFNR and OFNP.

Applications

- Option fiber jumper or pigtail.
- ▶ Indoor riser level and plenum level cable distribution.
- Interconnect between instruments, communication equipments.

Technical Parameters

Cable	Cable Diameter	Cable Wei	ght(kg/km)	TBF Diameter	Tensile Strength	Crush Resistance	Bending Radius	
Code	(mm)	PVC Jacket	LSZH Jacket	(µm)	Long/Short term(N)	Long/Short term(N/100mm)	Dynamic/Static(mm)	
GJFJV	1.80	3.50	4.50	900±50	60/100	100/500	50/30	
GJFJV	2.80	6.00	7.50	900±50	60/100	100/500	50/30	

.7.

Duplex Cable GJFJV-2F

Description

GJFJV zipcord interconnect cable use Φ 900µm or Φ 600µm frame-retardant tight buffer fiber as optical communication medium, the tight buffer fiber wrapped with a layer of aramid yarn as strength member units, and the cable is completed with a figure 8 PVC or LSZH(Low smoke, zero halogen, flame-retardant)jacket.

Characteristics

- Tight buffer fiber ease of stripping.
- ▶ Tight buffer fiber have excellent flame-retardant performance.
- Aramid yarn as strength member make cable have excellent tensile strength.
- Figure 8 structure jacket facilitate embranchment.
- The jacket anti-corrosion, anti-water, anti-ultraviolet radiation, flame-retardant and harmless to environment etc.
- ▶ All dielectric structure protect it from electromagnetic influence.
- Scientific design with serious processing art.

Standards

Comply with standard YD/T 1258.2-2003、ICEA-596、GR-409、IEC 60794-2-10/11、etc; and meet the requirements of UL approval for OFNR and OFNP.

Technical Parameters

Cable	Cable Size	able Size Cable Weight(kg/km)		TBF Diameter	Tensile Strength	Crush Resistance	Bending Radius	
Code	(mm)	PVC Jacket	LSZH Jacket	(µm)	Long/Short term(N)	Long/Short term(N/100mm)	Dynamic/Static(mm)	
GJFJV	(3.4±0.4)×(2.0±0.2)	8.00	8.70	900±50	100/200	100/200	50/30	
GJFJV	(6.0±0.4)×(2.8±0.2)	11.60	14.80	900±50	100/200	100/200	50/30	

Applications

- Duplex optical fiber jumper or pigtail.
- ▶ Indoor riser level and plenum level cable distribution.
- Interconnect between instruments, communication equipment

Distribution Cable GJFJV≤24F

Description

GJFJV multi-purpose distribution cable use several Φ900µm frame-retardant tight buffer fiber as optical communication medium, the tight buffer fiber wrapped with a layer of aramid yarn as strength member units, and the cable is completed with a PVC or LSZH(Low smoke, zero halogen, flame-retardant)jacket.

Characteristics

- ► Tight buffer fiber ease of stripping.
- Aramid yarn as strength member make cable have excellent tensile strength.
- The jacket anti-corrosion, anti-water, anti-ultraviolet radiation, flame-retardant and harmless to environment etc.

Applications

- ▶ Multi optical fiber jumper.
- Indoor any purpose cable distribution.

Standards

Comply with standard YD/T 1258.2-2005、ICEA-596、GR-409、IEC 60794-2-20/21、etc; nd meet the requirements of UL approval OFNP.

Cable Code	Fiber Count	Cable Diameter (mm)	Cable Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)	Jacket Material
GJFJV	2	4.1±0.25	12.4	200/660	300/1000	20D/10D	PVC
GJFJV	4	4.8±0.25	16.2	200/660	300/1000	20D/10D	PVC
GJFJV	6	5.1±0.25	20	200/660	300/1000	20D/10D	PVC
GJFJV	8	5.6±0.25	26	200/660	300/1000	20D/10D	PVC
GJFJV	10	5.8±0.25	28	200/660	300/1000	20D/10D	PVC
GJFJV	12	6.2±0.25	31.5	200/660	300/1000	20D/10D	PVC
GJFJV	24	8.0±0.25	42.5	200/660	300/1000	20D/10D	PVC
GJFJV	2	3.2±0.25	10	200/660	300/1000	20D/10D	LSZH
GJFJV	4	4.8±0.25	18	200/660	300/1000	20D/10D	LSZH
GJFJV	6	5.1±0.25	22.5	200/660	300/1000	20D/10D	LSZH
GJFJV	8	5.6±0.25	28	200/660	300/1000	20D/10D	LSZH
GJFJV	10	5.8±0.25	32.5	200/660	300/1000	20D/10D	LSZH
GJFJV	12	6.2±0.25	38	200/660	300/1000	20D/10D	LSZH
GJFJV	24	8.0±0.25	58.5	200/660	300/1000	20D/10D	LSZH

Mulit Purpose Description Cable MPC≥24F

Description

MPC multi-purpose distribution cable use 6-fiber subunits(Φ900μm tight buffer fiber, aramid yarn as strength member). A fiber reinforced plastic(FRP) locates in the center of core as a non-metallice strength member. The subunits are stranded around the cable core. The cable completed with a LSZH(Low smoke, zero halogen, flame-retardant)jacket.

Characteristics

- Stranded non-metallic strength member structure ensure the cable endure large tensile strength.
- Compact structure with high fiber capacity and density.
- The jacket anti-corrosion, anti-water, anti-ultraviolet radiation, flame-retardant and harmless to environment etc.
- All dielectric structure protect it form electromagnetic influence.
 Scientific design with serious processing art.

Applications

- Indoor any purpose cable distribution.
- Backbone distribution cable in a building.

Standards

Comply with standard YD/T 1258.2-2005、ICEA-596、GR-409、IEC 60794-2-20/21、IEC 332-1 and IEC 332-3C.

Cable Code	Fiber Count	Cable Diameter (mm)	Cable Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)
MPC	24	10.4±0.5	96	400/1320	300/1000	20D/10D
MPC	30	12.4±0.5	149	400/1320	300/1000	20D/10D
MPC	36	13.5±0.5	185	400/1320	300/1000	20D/10D
MPC	48	15.7±0.5	265	400/1320	300/1000	20D/10D
MPC	60	18.0±0.5	350	400/1320	300/1000	20D/10D
MPC	72	20.5±0.5	440	400/1320	300/1000	20D/10D
MPC	96	20.5±0.5	448	400/1320	300/1000	20D/10D
MPC	108	20.5±0.5	448	400/1320	300/1000	20D/10D

Break-out Cable GJBFJV

Description

GJBFV mulit-purpose break-out cable use simplex cable(Ф900µm tight buffer fiber, aramid yarn as strength member) as subunit. A fiber reinforced plastic(FRP) locates in the center of core as a non-metallice strength member. The subunits are stranded around the cable core. The cable completed with a PVC or LSZH(Low smoke, zero halogen, flame-retardant)jacket.

Characteristics

- Stranded non-metallic strength member structure ensure the cable endure large tensile strength.
- The jacket anti-corrosion, anti-water, anti-ultraviolet radiation,flame-retardant and harmless to environment etc.

Applications

Indoor any purpose cable distribution.

Standards

Comply with standard YD/T 1258.2-2005, ICEA-596, GR-409, IEC 60794-2-20/21, etc; and meet the requirements of UL approval for OFNP.

Cable Code	Fiber Count	Cable Diameter (mm)	Cable Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)	Jacket Material
GJBFJV	2	7.2±0.5	38	200/660	300/1000	20D/10D	PVC
GJBFJV	4	7.2±0.5	45.5	200/660	300/1000	20D/10D	PVC
GJBFJV	6	8.3±0.5	63	200/660	300/1000	20D/10D	PVC
GJBFJV	8	9.4±0.5	84	200/660	300/1000	20D/10D	PVC
GJBFJV	10	12.2±0.5	125	200/660	300/1000	20D/10D	PVC
GJBFJV	12	12.2±0.5	148	200/660	300/1000	20D/10D	PVC
GJBFJV	18	12.2±0.5	153	400/1320	300/1000	20D/10D	PVC
GJBFJV	2	7.2±0.5	45	200/660	300/1000	20D/10D	LSZH
GJBFJV	4	7.2±0.5	54	200/660	300/1000	20D/10D	LSZH
GJBFJV	6	8.3±0.5	75	200/660	300/1000	20D/10D	LSZH
GJBFJV	8	9.4±0.5	100	200/660	300/1000	20D/10D	LSZH
GJBFJV	10	12.2±0.5	145	200/660	300/1000	20D/10D	LSZH
GJBFJV	12	12.2±0.5	170	200/660	300/1000	20D/10D	LSZH
GJBFJV	18	12.2±0.5	176	400/1320	300/1000	20D/10D	LSZH

Waterproof Cable GJA

Description

GJA waterproof pigtail cable use simple cable(Φ900μm tight buffer fiber, aramid yarn as strength member) as subunit A fiber reinforced plastic(FRP) locates in the center of core as a non-metallice strength member. The subunits are stranded around the cable core. An aluminum polyethylene laminate is applied around the cable core. The cable is completed with a PE jacket.

Characteristics

- Stranded non-metallic strength member structure ensure the cable endure large tensile strength.
- ▶ The jacket anti-corrosion, anti-water, anti-ultraviolet radiation etc.
- APL moisture barrier.
- Scientific design with serious processing art.

Standards

Comply with standard YD/T 1258.2-2005、ICEA-596、GR-409、IEC 60794, etc.

Applications

- Indoor any purpose cable distribution.
- Interconnect from outdoor to indoor for optical cable distribution equipment.

Fiber Count	TBF Diameter (μm)	TBF Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)
2	8.9±0.5	58.1	220/660	300/1000	20D/10D
4	8.9±0.5	58.3	220/660	300/1000	20D/10D
6	9.8±0.5	73	220/660	300/1000	20D/10D
8	10.6±0.5	95.7	220/660	300/1000	20D/10D
12	13.4±0.5	155.2	220/660	300/1000	20D/10D

Bow-type Drop Cable GJXH

Description

The optical fiber unit is positioned in the center. Two parallel Fiber Reinforced(steel wire) are placed at the two sides. Then, the cable is completed with a black or color LSZH sheath.

Characteristics

- Special low-bend-sensitivity fiber provides high bandwidth and excellent communication transmission property.
- Two parallel steel wire strength members ensure good performance of crush resistance to protect the fiber.
- Simple structure, light weight and high practicability.
- ▶ Novel flute design. Easily strip and splice, simplify the installation and maintenance.
- ▶ Low smoke, zero halogen and flame retardant sheath.

Technical Parameters

Cable Code	Fiber Count	Cable Size (mm)	Cable Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)
GJXH	1	(2.0±0.1)×(3.0±0.1)	10	100/200	1000/2200	30/60
GJXH	2	(2.0±0.1)×(3.0±0.1)	10	100/200	1000/2200	30/60
GJXH	4	(2.0±0.1)×(3.0±0.1)	10	100/200	1000/2200	30/60

Bow-type Drop Cable GJXFH

Description

The optical fiber unit is positioned in the center. Two parallel Fiber Reinforced(FRP) are placed at the two sides. Then, the cable is completed with a black or color LSZH sheath.

Characteristics

- Special low-bend-sensitivity fiber provides high bandwidth and excellent communication transmission property.
- ▶ Two parallel FRP strength members ensure good performance of crush resistance to protect the fiber.
- Simple structure, light weight and high practicability.
- ▶ Novel flute design. Easily strip and splice, simplify the installation and maintenance.
- Low smoke, zero halogen and flame retardant sheath.

Technical Parameters

Cable Code	Fiber Count	Cable Size (mm)	Cable Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)
GJXFH	1	(2.0±0.1)×(3.0±0.1)	9	40/80	500/1000	15/30
GJXFH	2	(2.0±0.1)×(3.0±0.1)	9	40/80	500/1000	15/30
GJXFH	4	(2.0±0.1)×(3.0±0.1)	9	40/80	500/1000	15/30

Self-Supporting Bow-type Drop Cable GJYXFCH

Description

The optical fiber unit is positioned in the center. Two parallel Fiber Reinforced(FRP) are placed at the two sides. A steel wire as the additional strength member is also applied. Then, the cable is completed with a black or color LSZH sheath.

Characteristics

- Special low-bend-sensitivity fiber provides high bandwidth and excellent communication transmission property.
- ▶ Two parallel FRP strength members ensure good performance of crush resistance to protect the fiber.
- ▶ Single steel wire as the additional strength member ensure good performance of tensile strength.
- Simple structure, light weight and high practicability.
- ▶ Novel flute design. easily strip and splice, simplify the installation and maintenance.
- Low smoke, zero halogen and flame retardant sheath.

Technical Parameters

Cable Code	Fiber Count	Cable Size (mm)	Cable Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)
GJYXFCH	1	(2.0±0.1)×(5.2±0.1)	20	300/600	2200	15/30
GJYXFCH	2	(2.0±0.1)×(5.2±0.1)	20	300/600	2200	15/30
GJYXFCH	4	(2.0±0.1)×(5.2±0.1)	20	300/600	2200	15/30

- rankfurt	USTOAS GF002
.Os Angeles	UABB10 NZ9835
/lia mi	US057
Chennai	AA6668
	07703

Self-Supporting Bow-type Steel Wire Drop Cable GJYXCH

Description

The optical fiber unit is positioned in the center. Two parallel Fiber Reinforced(steel wire) are placed at the two sides. A steel wire as the additional strength member is also applied. Then, the cable is completed with a black or color LSZH sheath.

Characteristics

- Special low-bend-sensitivity fiber provides high bandwidth and excellent communication transmission property.
- > Two parallel steel wire strength members ensure good performance of crush resistance to protect the fiber.
- Single steel wire as the additional strength member ensure good performance of tensile strength.
- Simple structure, light weight and high practicability.
- ▶ Novel flute design. easily strip and splice, simplify the installation and maintenance.
- Low smoke, zero halogen and flame retardant sheath.

Technical Parameters

Cable Code	Fiber Count	Cable Size (mm)	Cable Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)
GJYXCH	1	(2.0±0.1)×(5.2±0.1)	20	300/600	2200	15/30
GJYXCH	2	(2.0±0.1)×(5.2±0.1)	20	300/600	2200	15/30
GJYXCH	4	(2.0±0.1)×(5.2±0.1)	20	300/600	2200	15/30

Bow-type Drop Cable for Duct GJXFHA

Description

The optical fiber unit is positioned in the center. Two parallel Fiber Reinforced(FRP) are placed at the two sides. Then, the cable is completed with a black or color LSZH sheath.

Characteristics

- Special low-bend-sensitivity fiber provides high bandwidth and excellent communication transmission property.
- > Two parallel FRP strength members ensure good performance of crush resistance to protect the fiber.
- Simple structure, light weight and high practicability.
- ▶ Novel flute design. easily strip and splice, simplify the installation and maintenance.
- Low smoke, zero halogen and flame retardant sheath.
- APL moisture barrier.

Technical Parameters

Cable Code	Fiber Count	Cable Size (mm)	Cable Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)
GJXFHA	1	7.3±0.2	42	40/80	2000	15/30
GJXFHA	2	7.3±0.2	42	40/80	2000	15/30
GJXFHA	4	7.3±0.2	42	40/80	2000	15/30

Unitube Light-armored Cable GYXTW

Description

The fibers, 250µm, are positioned in a loose tube made of a high modulus plastic. The tube are filled with a water-resistant filling compound. The tube is wrapped with a layer of PSP longitudinally. Between the PSP and the loose tube water-blocking material is applied to keep the cable compact and watertight. Two parallel steel wires are placed at the two side of the steel tape. The parallel steel wires are placed at the two sides tape. The cable is completed with a polyethylene(PE) sheath.

Standards

GYXTW cable complies with standard YD/T 769-2003.

Characteristics

• Good mechanical and temperature performance.

- ▶ High strength loose tube that is hydrolysis resistant.
- Special tube filling compound ensure a critical protection of fiber.
- Crush resistance and flexibility.
- ▶ PSP enhancing moisture-proof.
- ► Two parallel steel wires ensure tensile strength
- Small diameter, light weight and friendly installation
- Long delivery length
- Application:duct/aerial

Technical Parameters

Cable	Fiber	Cable Diameter	Cable Weight	Tensile Strength	Crush Resistance	Bending Radius
Code	Count	(mm)	(kg/km)	Long/Short term(N)	Long/Short term(N/100mm)	Dynamic/Static(mm)
GYXTW	4	8	60	600/1500	300/1000	10D/20D

Similar Types

GYFXT Structure

GYXTZW Structure

MGXTW Structure

GYXTS Structure

Stranded Loose Tube Cable GYTS

Description

The fibers, 250µm, are positioned in a loose tube made of a high modulus plastic. The tubes are filled with a water-resistant filling compound. A steel wire, sometimes sheathed with polyethylene (PE) for cable with high fiber count, locates in the center of core as a metallic strength member. Tubes (and fillers) are stranded around the strength member into a compact and circular cable core. The PSP is longitudinally applied over the cable core, witch is filled with the filling compound to protect it from water ingress. Then, the cable is completed with a PE sheath.

Standards

GYTS cable complies with standard YD/T 901-2001 as well as IEC60794-1

Characteristics

- Good mechanical and temperature performance.
- ▶ High strength loose tube that is hydrolysis resistant.
- Special tube filling compound ensure a critical protection of fiber.
- Special designed compact structure is good at preventing loose tube from shrinking.
- Crush resistance and flexibility.
- ▶ PE sheath protects cable from ultraviolet radiation
- The following measures are taken to ensure the cable watertight:
- Steel wire used as the central strength member
- ► Loose tube filling compound
- ▶ 100% cable core filling
- ▶ PSP enhancing moisture-proof
- Application:duct/aerial/direct buride

Technical Parameters

Cable Type (Increased by 2fibers)	Fiber Count	Tube	Fillers	Cable Diameter (mm)	Cable Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)
GYTS	4	1	4	9	80	600/1500	300/1000	10D/20D

Similar Types

GYTA Structure

GYFTY Structure

GYFTA Structure

MGTS Structure

Double Sheathed Cable GYTA53

Description

The fibers, 250µm, are positioned in a loose tube made of a high modulus plastic. The tubes are filled with a water-resistant filling compound. A steel wire, sometimes sheathed with polyethylene (PE) for cable with high fiber count, locates in the center of core as a metallic strength member. Tubes(and fillers) are stranded around the strength member into a compact and circular cable core. An Aluminum Polyethylene Laminate(APL) is applied around the cable core, witch is filled with the filling compounding to protect it from water ingress. Then, the cable core is covered with a thin PE inner sheath. After the PSP is longitudinally applied over the inner sheath, the cable is completed with a PE outer sheath.

Standards

GYTA53 cable complies with standard YD/T 901-2001 as well as IEC60794-1

Characteristics

- ▶ Good mechanical and temperature performance.
- ▶ High strength loose tube that is hydrolysis resistant.
- Special tube filling compound ensure a critical protection of fiber.
- Crush resistance and flexibility.
- The following measures are taken to ensure the cable watertight:
- Steel wire used as the central strength member
- ► Loose tube filling compound
- ▶ 100% cable core filling
- PSP enhancing moisture-proof
- ▶ Water-blocking material
- Application:duct/aerial/direct buride

Technical Parameters

Cable Type (Increased by 2fibers)	Fiber Count	Tube	Fillers	Cable Diameter (mm)	Cable Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)
GYTA53	4	1	4	12.5	130	1000/3000	1000/3000	10D/20D

Similar Types

GYTY53 Structure

GYFTA53 Structure

GYXTW53 Structure

GYFTZA53 Structure

Figure 8 Cable GYTC8S

Description

The fibers, 250µm, are positioned in a loose tube made of a high modulus plastic. The tubes are filled with a water-resistant filling compound. A steel wire locates in the center of core as a metallic strength member. The tube(and fillers) are stranded around the strength member into a compact and circular cable core. After an Aluminum Polyethylene Laminate(APL) moisture battier is applied around the cable core, this part of cable accompanied with the stranded wires as the supporting part are completed with a polyethylene(PE) sheath to be figure 8 structure.

figure 8 cable GYTC8Y, GYTC8Y are also available on request. This type of cable is specifically applied for self-supporting aerial installation.

Standards

GYTS cable complies with standard YD/T 901-2001 as well as IEC60794-1

Characteristics

- High tensile strength of stranded wires meet the requirement of self-supporting and reduce the installation cast.
- Good mechanical and temperature performance.
- ► High strength loose tube that is hydrolysis resistant.
- Special tube filling compound ensure a critical protection of fiber.
- The following measures are taken to ensure the cable watertight:
- Steel wire used as the central strength member
- Loose tube filling compound
- ▶ 100% cable core filling
- ► APL moisture barrier
- Application:Self-supporting

Technical Parameters

Cable Type (Increased by 2fibers)	Fiber Count	Tube	Fillers	Cable Diameter (mm)	Cable Weight (kg/km)	Tensile Strength Long/Short term(N)	Crush Resistance Long/Short term(N/100mm)	Bending Radius Dynamic/Static(mm)
GYTC8S	4	1	4	6.8×9.2×18.0	214	1000/3000	300/1000	10D/20D

Similar Types

GYXTC8S Structure

Flame-retardant Jacket

All Dielectric self-supporting Aerial Cable ADSS

Description

ADSS cable is loose tube stranded. Fiber, 250µm, are positioned in a loose tube made of a high modulus plastic. The tubes are filled with a water-resistant filling compound. The tubes(and fillers) are stranded around a FRP(Fiber Reinforced Plastic) as a non-metallic central strength member into a compact and circular cable core. After the cable core is filled with filling compound, it is covered with thin PE(polyethylene) inner sheath. After stranded layer of aramid yarns are applied over the inner sheath as strength member, the cable is completed with PE or AT(anti-tracking) outer sheath.

Standards

ADSS cable complies with standard IEEE 1222-2004 as well as IEC60794-1

Characteristics

Can be installed without shutting off the power

► Excellent AT performance. The maximum inductive at the operating point of AT sheath can reach 25kv

- Light weight and small diameter reducing the load caused by ice and wined and load on towers and backprops.
- Large span lengths and the largest span is over 1000m
- Good performance of tensile strength and temperature.
- ▶ The design life span is over 30 years
- ► Application: self-supporting

Technical Parameters

Ref.outer	Ref.Weig	ht(kg/km)	Ref.daily max.	Max.allo wable	Break	Strength	Modulus of	Heat Expansion	: N	Suitable	Span(n tandard.	n) .m
(mm)	PE Sheath	AT Sheath	(kN)	(kN)	(kN) (kN)		Expansion (kN/mm²)	Coefficient (kN/mm²)	А	В	С	D
12.5	125	136	1.50	4	10	4.6	7.6	1.8	160	100	140	100
13.0	132	142	2.25	6	15	7.6	8.3	1.5	230	150	200	150
13.3	137	148	3.00	8	20	10.35	9.45	1.3	300	200	290	200
13.6	145	156	3.60	10	24	13.8	10.8	1.2	370	250	350	250
13.8	147	159	4.50	12	30	14.3	11.8	1.0	420	280	400	280
14.5	164	177	5.40	15	36	18.4	13.6	0.9	480	320	460	320
14.9	171	185	6.75	18	45	22.0	16.40	0.6	570	380	550	380
15.1	179	193	7.95	22	53	26.4	18.04	0.3	670	460	650	460
15.5	190	204	9.00	26	60	32.2	19.1	0.1	750	530	750	530
15.6	194	208	10.5	28	70	33.0	19.6	0.1	800	560	800	560
16.3	211	226	12.75	34	85	40.0	20.1	0.1	880	650	880	650
16.8	226	242	15.45	41	103	48.0	24.0	-0.4	1000	750	1000	760
17.2	236	253	16.2	45	108	51.0	25.1	-0.5	1100	800	1100	830
17.9	249	266	18.0	50	120	58.8	26.1	-0.8	1180	880	1180	900

Storage/Operating Temperature:-40°Cto+70°C

Optical Characteristics

		G625	G655	50/125µm	65.5/125µm
	@ 850 nm			≤3.0dB/km	≤3.3dB/km
Attenuation	@1300 nm			≤1.0dB/km	≤1.0dB/km
(+20°C)	@1310 nm	≤0.36dB/km	≤0.40dB/km		
	@1550 nm	≤0.22dB/km	≤0.23dB/km		
Randwidth(Class A)	@ 850 nm			≥500MHz·km	≥200MHz·km
Danuwiutii(Class A)	@1300 nm			≥1000MHz·km	≥600MHz·km
Numerical Aperture				0.200±0.015NA	0.275±0.015NA
Cable cutoff wavelengt	hλcc	≤1260nm	≤1450nm		

8 Core Mini Cable

Fiber Parameters

		Cok a		Slar	Qncagga_rgn		
L 0.		uck y		Sity	E,435?/		
1	Mada Field Diama	tor	1310nm	μm	9.0±0.4		
7		lei	1550nm	μm	10.1±0.5		
2	Clade	ding Diam	eter	μm	124.8±0.7		
3	Cladding	g Non-Circ	cularity	%	=0.7		
4	Core-Cladding Concentricity Error				=0.5		
5	Coat	ting Diame	eter	μm	245±5		
6	Coating	g Non-Circ	ularity	%	=6.0		
7	Cladding-Coat	ting Conce	entricity Error	μm	=12.0		
8	Cable C	utoff Wave	elength	nm	λ _{cc} =1260		
0	Attonuction(mov	\ \	1310nm	dB/m	=0.4		
9	Allenuation(max.	Attenuation(max.) 1550nm			=0.3		
10	Maara Banding Loop	1turn×10mm radius @1550nm		dB	=0.75		
10	Macro-Bending Loss	1turn×10mm radius @1625nm		dB	=1.5		

Cable Parameters

lte	ems	Specifications				
Dĝ cp	Count	8				
Colored Fiber	Color	Blue Orange Green Brown Gray White Red				
	Dimension	3.0±0.1 mm				
Outer Jacket	Material	LSZH				
	Color	Black				
Strength	Member	Kevlar				

Mechanical and Environmental Characteristics

Items	Unite	Specifications
Tension Long Term	N	200
Tension Short Term	Ν	400
Crush Long Term	N/10cm	100
Crush Short Term	N/10cm	500
Min. Bend Radius Dynamic	mm	20D
Min. Bend Radius Static	mm	10D
Installation Temperature		-10 +60
Operating Temperature		-20 +60
Storage Temperature		-20 +60

2018-1.1 version